' AD~A094 512 BATTELLE COLUMBUS LABS OH F/6
| MOLECULAR INTERACTIONS WITH MANY-BODY PERTURBATION THEORY. (U}
SEP 80 R J BARTLETT AFOSR=78=3661
UNCLASSIFIED AFOSR=-TR=81-0009

Loe ]
an




ANNUAL TECHNICAL REPORT

Grant No. I ‘
FECSA T -3EES
MOLECULAR INTERACTIONS WITH
MANY-BODY PERTURBATION THEORY

to

U. S. AIR FORCE
OFFICE OF SCIENTIFIC RESEARCH

RORAE Oy AP




-

- -

-

PO N N cocn 4

ol

PR

ANNUAL TECHNICAL REPORT

erant No. (D

A S Tf - SEES
MOLECULAR INTERACTIONS WITH

MANY-BODY PERTURBATION THEORY

to

U. S. AIR FORCE
OFFICE OF SCIENTIFIC RESEARCH

Principal Investigator:
Rodney J. Bartlett

AIR FORCE OFFICE OF SCIENTIFIC RESEARCH (AFSC)
NOTICE OF TRANSMITTAL TO DDC

This technical reperi has been reviewed and 1s
approved for public relsase IAW AFR 190-12 (7b).
Jisteibution is unlimited.

A. D, BLOSH

fuchuical IntTormation O0fficer

BATTELLE
Columbus Laboratories
505 King Avenue
Columbus, Ohio 43201

T T




2

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Enterrc)

REPQRT DOCUMENTATION PAGE

READ INSTRUCTIONS
BEFORE COMPLETING FORM

1. REPORT NUMB J

AFQSR.{TR— 8 1~ 0’9/09

2. GOVT ACCESSION NO,

AD-Ho7¥ §

{

. RE?ﬁNT'S CATALOG NUMBER

TLE (and Subtltie)

>’ MOLECULAR _INTERACTIONS WITH
‘ﬁANY -§ODY PERTURBATION THEORY »

it e

—

InterlmJ/fM

éc RERDRT Ny

7. - ER(:)
0 et ot
?i;odney J. [Bartlett /
L._...__, —e

=y

l/FOSR 78-3661

3]

—

Lt TR e

9. PERFORMING ORGANIZATION NAME AND ADDORESS

Battelle's Columbus Laboratories
505 King Avenue
Columbus, Ohio 43201

ELEMENT PROJECT. TASK
wo T NU

61102F 239:1 Lib:/

Hl. CONTROLLING OFFICE NAME AND ADDRESS

. REPORT DATE

AFOSR/NP »‘f;"”"”“”""‘"'?“*”'? September 15, 1980

Bolling AFB ! // .{b ‘6 ¢ 13. NUMBER OF PAGES

Wash DC 20332 e N 95

14. MONITORING AGENCY NAME & ADODRESS(I! {fagent (rom Controlling Office) 1S. SECURITY CLASS. (of this report)
} P ) .
] 9%/ UNCLASSIFIED
T T— 15a. DECLASSIFICATION DOWNGRADING
SCHEDULE

. DISTRIBUTION STATEMENT (of this Report)

Approved for public release?
distributicn unlimited,

Foapir e

PR S LN TN

NN S S A SR Y

BYS H B

L3

ISR 1

. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different (rom Repart)

. SUPPLEMENTARY NOTES

e

-
[P Vel (U

9. KEY WORQS (Continue on reverse side if necessary and identifv by block number)

Many-Body perturbation theory, ab initio quantum mechanical methods,
chemical lasers, plume detection, couple-cluster approaches.

——— e

20 ABSTRACT (Continue on reverse side I necessary and identify bv dlock number)
)TBlndxng energies including valence-shell electron correlation were obtained from

many-body perturbation theory (MBPT) for diborane, borane carbonyl, and borzane.
Results were obtained for basis sets of double zeta quality and for basis sets
with polarization functions added on all atoms. The binding energies were found
to be (respectively) 35, 21, and 30 kcal/mole. Correlation effects account for
48, 62, and 32 percent of the binding. The size-consistent nature of the MBPT
method enables the computation of enthalpies of reaction for four different

reactions involving monoborane, diborane, carbon monoxide, and borane carbonyl.-—¢ b
aE o 2oy S ‘U"ﬁf2f7,13:‘75’572f52>"J| )
- - - .-'-‘-
>

JEETEEIE Y S,

.
>

S

+ comtrpom———— = - - . . -
e | g et

[PRUE -




. - e
st
UMCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)
/

When the theoretical values are corrected for vibrational zero-point energies
and the experimental data are adjusted for temperature effects, the results
agree (within 5 percent) and thus confirm the set of experimental enthalpies
( ) for the association reaction yielding diborane. The result for the binding

‘ energy of borazane constitutes a prediction in the absence of an experimental
value.

[vRs

N

i %
=
{
?
i -
]

v

- -
Pt U A

-

Pttt

.
RS- -y
S SR

R 50

E

J U m e g et o




i

B B . -

£3Battelie

Colurebans tabrratares
vk CoN e
RIE B V|

September 15, 1980

Dr. Ralph Kelley
Air Force Office of
Scientific Research
Building 410
Bolling Air Force Base, D. C. 20332

Dear Dr. Kelley:

Re: Grant No. (D
P ;1F;bféﬁfﬁ/

Enclosed are six(6) copies of our Annual Technical Report on the above
grant entitled "Molecular Interactions with Many-Body Perturbation
Theory."

Sincerely,

Rodney J. Bartlett
Physical Sciences Section

RJB/sp
Enc. (6)

50 Years Of Service
1929-1979




TABLE OF CONTENTS

I. DESCRIPTION OF PROBLEMS . . . . . . . . . . . . . . .. 1
I1. REVIEW OF RESEARCH ACCOMPLISHMENTS . . . . . . . . . . 5
II1. PRESENTATIONS AND PUBLICATIONS . . . . . . . . . . . . 10

Iv. SYNOPSIS OF ORBITAL OPTIMIZATION IN
COUPLED CLUSTER THEORY . . . . . . . v . . . . . . .. 15

REFERENCES . . . . . o v o e e e e e e e e e e e e 23

v
1)
i

APPENDIX A

R

ELECTRON CORRELATION IN LARGE MOLECULES WITH MANY BODY METHODS

APPENDIX B

THE REDUCED LINEAR EQUATION METHOD IN COUPLED CLUSTER THEORY

pccescion ¥or
Cnrrs  GRagt :

DTIC TAB =
Upannenrced o1 !
Justification .o

e e e -

BY - st T
Diatributnou/

Avallability Codes
Avatl audfor

Dist Spreizl
!

[
~ -

J
{
l
¢
]

el g

4

oy eoms N SN UEE o O oEE R s e
H




— GEE WU NN NS WS =

G I N oa) G OGN IR aEw e

I. DESCRIPTION OF PROBLEMS

In a wide variety of Air Force applications, highly detailed
information about atoms, molecules, and their interactions is required(1'3)
This information is necessary in problems ranging from chemical laser
development, to the detection and identification of rocket plumes, to
metal clustering and aerosol formations, and even to nuclear weapons effectéj'3)
Probably the most crucial component needed to understand molecular
reactions is the potential energy surfaces that serve to describe the

Q)

attractions among the atoms and molecules'. ’ However, such information is

not easy to obtain. A certain amount of information about the molecular
forces near equilibrium in a bound molecule is available from spectroscopy.
Some information about the potential energy surface even in the absence of
binding can be provided from crossed molecular-beam experiments. But, in
general, potential energy surfaces are not amendable to experimental
determination. Instead, other types of experimental observations such as
kinetics experiments, coupled with very simple theoretical models for a
surface, are used to infer pieces of information about the parameters of the
model such as what the activation barrier might be.

The most direct approach to obtaining detailed information about
a potential energy surface is offered by predictive, ab initio quantum
mechanical calculations. However, to make it feasible to calculate accurate
energy surfaces for molecules, much better and more computationally efficient
methods must still be developed.
One such approach, namely many-body perturbation theory (MBPT)(4']5)

and its infinite-order extensions termed coupled-cluster methods (CCM)(11,16-20)
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offer a number of attractive features that the more traditional configuration

(21)

interaction approaches lack. During the first two years of this grant

very efficient computer codes to perform MBPT/CCM calculations were written

and employed for the first time in large-scale ab initio calculations of

potential energy surfaces§]1’2]) The successes of this effort have been substantial.
These include the determination of a complete force-field for the H20

molecule, including all force-constants through fourth-order, that is

sufficiently accurate that once improved experiments were carried out after our
calculations, many of the previously accepted values fcr the force constants

were revised to be more consistent with our predictions.(zz) Also, a study of

6+ZBH3, H3BNH3->BH3
H3BC0+BH3+CO was made that predict these binding energies to within

the binding energies of the molecules B,H +NH3, and

1 kcal/mole of the accepted experiments for diborane and borane carbonyl,

and made a prediction in the case of borazane in the absence of an experiment.(]4)

Earlier experiments which gave much higher values for the binding energies
of diborane and borane carbonyl than we computed are now completely discounted.
Similar successes with studies of the isomerization energy and activation
barrier of HNC»HCN£23)and CH3NC+CH3CNS24)the photodissociation of formaldehydegzs)
and various studies of methanol, methoxy, and the formyl radical(ze)attest to
the reliability of our MBPT/CCM methods.

Building upon this work supported by the AFOSR we have now
carried out extensive studies of the potential energy surface for the
two inelastic collisions, 0(°P)+H,0 and 0(%p)+CO,
Air Force Rocket Propulsion Laboratory, for the purpose of obtaining

, under contract to the

vibrational excitation cross-sections that are needed in actual detection
(27)

devices.
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Despite the many successes we have had, there are still categories
of problems that cannot yet be attacked by MBPT/CCM. These include studies
of most excited states, reactions that break multiple bonds, and applications
to various kinds of open-shell mo1ecu1es?])To satisfy these additional
requirements it is necessary to simultaneously develop the formal theory,
write additional computer programs, and continue to make landmark applications
of our developing quantum mechanical technology. Although in many cases the
formal theory is less dramatic than the applications, the continual extension
of the theory has a greater impact on our ability to calculate accurate
energy surfaces for whatever categories of problems might emerge from the
needs of the Air Force.

Consistent with this objective, much of our work this past year
has been devoted to formal theory. This includes optimization of orbitals
within the coupled-cluster framework and developing additional mathematical
techniques to efficiently solve the non-linear coupled cluster equations.
Additional applications to a variety of problems have also been accomplished.

In the following, Section II discusses the research objectives
of this grant, and summarizes some of the notable accomplishments made in
the past year. For the previous year's effort, we refer to last year's
annual report. Section III 1ists the publications and presentations which
have been supported by this grant. Section IV discusses in some detail
the idea of orbital optimization in coupled-cluster theory. This is a
radically new approach of substantial scientific interest. Appendices A

and B are two manuscripts recently accepted for publication. The first
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discusses applications of MBPT/CCM to large molecules, while the second
reports on a new mathematical technique we have developed to efficiently

solve the non-linear equations of the type that .ccur in coupled cluster

theory. ’
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II. REVIEW OF RESEARCH ACCOMPLISHMENTS

The overall objectives of this research program include the

following:

(1) Develop new, mare accurate and more efficient ab initio

’ guantum mechanical methods based upon MBPT and CCM for
determining molecular properties and particularly,
potential energy surfaces for molecular interactions.
(2) Implement these methods in highly efficient, transportable
computer codes, to enable computations on potential
energy surfaces to be made on an almost routine basis.
(3) Apply these techniques to a variety of problems that
are of interest to AFOSR, and that serve to establish
the range of accuracy for MBPT and CCM methods.
, In line with these overall objectives, a number of accomplishments
: have been made so far in this program. The accomplishments from the
previous year are listed in the Annual Report for 1979. Hence, we will
T? summarize only the additional achievements that have been made in the
?f past year.
d The main focus for our effort this last year has been formal,
E ! being directed toward the generalization of the MBPT and CCM theory. In
; particular, the inclusion of monoexcited clusters and the theory required
f; for orbital optimization have been developed within the CCM model. Additional
":
y
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formal work has been directed at the multireference MBPT/CCM theory. A
series of applications to a wide variety of problems using our previously
established computer codes have also been made to demonstrate the applicability

of our developing methods. A summary of achievements follows.

The coupled-cluster theory and programs have been
generalized to include monoexcited clusters (i.e., T]).
This is found to be important in obtaining correct
potential energy curves for cases where a single-
determinant reference function is not entirely

appropriate.

For the first time, the effect of optimizing the
molecular orbitals in the coupled-cluster theory has

been studied. This model is similar to a multi-
configuration self-consistent field (MCSCF) approach,
except, via CCM, one employs all single, double, and
guadruple type CI excitations. Nothing of this magnitude
has been attempted previously. We are using this

method to study some unusually difficult molecular

problems.

A new numerical techniquegzg)simiTar to the reduced

partitioning procedure developed for eigenvalue

(29)

problems by the author some years ago, has been

generalized to apply to the nonlinear coupled-cluster
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equations. This has the effect of greatly increasing

the rate of convergence when solving the equations.

This has enabled us to obtain accurate results for

some pathological cases that could not have been obtained

by the standard iterative approach. (See Appendix B).

The decomposition of formaldehyde, H2C0, to radical and
molecular products and its rearrangement to hydroxycarbene
has .een studiedgzs%his problem is of substantial experi-
mental interest because of formaldehyde's prominence in
combustion/plume processes. The activation barriers and
heats of reactions have been obtained. In the latter case,
agreement with experiment is within + 2 kcal/mole. The
activation barrier predictions support the CI results of
Goddard and Schaefer(30) that would suggest a tunneling
mechanism for H2C0+H2+C0.

A series of detailed comparisons of various MBPT models with

CCD for the C, N, and O atoms and the H,0, NH3, and CH4

2
molecules were made this year@])These comparisons, plus a
number of others we have made, suggest that the infinite-order
CCD results differ insignificantly from the fourth-order model,
DQ-MBPT(4), for most normal cases(?])This supports

the predictions of the Tess expensive fourth-order model

for larger molecules.
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An experimentalist measured the isomerization energy of
HNC-HCN to be 1041 keal/mole. 31} This disagreed with our

theoretical prediction of 15+2 kca]/mo]e.(24)

To attempt
to resolve this discrepancy, we performed calculations on

this system for a series of approximations and basis sets,

—ess NN VN UEN O S oww
n

concluding, indeed, that the value 15+2 kcal/mole is

accurate.(23)

We believe this will prove to be another
case where theory has demonstrated that the experimental value
is in error.
.5 G. In addition to the HNC-HCN rearrangement, the interesting
systems LiNC+LiCN and BNC-BCN were also studied?a)Essentia11y
. no barrier to rearrangement is found for LiNC-LiCN, while
t BNC is found to be more stable than BCN. Our calculations

made predictions of the thermochemistry parameters for

—

these molecules which we hope will stimulate some

experimental work .

H. The first all-electron ab initio coupled-cluster and MBPT

'y

calculations of benzene were made this year. This work

demonstrates that a molecule of this size has at least a

- -

20 percent error in its correlation energy due to the

neglect of CI type quadruple excitations.(32) This

.~

emphasizes the importance of using methods like MBPT/CCM
that properly include such higher order excitation effects

“ if reliable quantum mechanical calculations are to be

o

possible for larger molecules. (See Appendix A.)

’




Additional calculations at the MBPT/CCM level on a
variety of systems including Li4, CH30, HNO, and i
other unusual molecules are also being made to
predict structures, thermochemistry, and other i

properties like Jahn-Teller distortions. :
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II1. PRESENTATIONS AND PUBLICATIONS

A e —

Presentations (1980)

R. J. Bartlett, "Potential Energy Surfaces with Many-Body Methods"
invited speaker, Canadian Theoretical Chemistry Conference, June 17, 1980.

R. J. Bartlett, "Many-Body Methods and Their Molecular Applications",
invited speaker, New York Academy of Sciences Conference on Quantum
Chemistry in the Biomedical Sciences, New York, June 2, 1980,

R. J. Bartlett, "Molecular Applications of Many-Body Perturbation
Theory and Coupled Cluster Methods," Argonne National Laboratory,
Argonne, IL, January 1980.

R. J. Bartlett, "Molecular Hyperpolarizabilities: Correlated Predictions",
Sanibel Symposium on the Quantum Theory of Matter, March 11, 1980.
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G. D. Purvis, "Orbital Optimization and Reduced Partitioning Method
Within Coupled Cluster Theory", Sanibel Symposium on the Quantum Theory
) ! of Matter, March 13, 1980.
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Presentations (1979)

R. J. Bartlett, "Molecular Applications of Coupled-Cluster and Many-Body
Perturbation Methods", invited talk, Nobel Symposium on Many-Body Theory,
Lerum, Sweden, June 11, 1979,

R. J. Bartlett, "Accurate Applications of Correlated Ab Initio Quantum
Chemistry to Realistic Chemical Problems", Univ. of Kentucky, Lexington,
Ky., February 2, 1979.

R. J. Bartlett, "Coupled-Cluster Theory for Molecular Potential Energy
Surfaces", invited speaker, Sanibel Symposium on Quantum Theory of Matter,
Palm Coast, Florida, March 12, 1979.

R. J. Bartlett, "Coupled Cluster Theory, Many-Body Perturbation Theory and
Their Molecular Applications”, Ohio University, Athens, Ohio, May 6, 1979.

R. J. Bartlett, "Have Ab Initio Quantum Mechanical Applications Finally
Arrived?", University of Florida, Gainesville, Florida, May 11, 1979.

R. J. Bartlett, "Accurate Applications of Correlated Quantum Chemical Methods
to Real Chemical Problems", Mount Sinai School of Medicine, New York, New
York, June 4, 1979,

R. J. Bartlett, "Many-Body Perturbation Theory", Aarhus University, Aarhus,
Denmark, June 18, 1979.

R. J. Bartlett, "Have Ab Initio Quantum Mechanical Applications Finally
Arrived?", University of New Orleans, New Orleans, LA, October 5, 1979.

R. J. Bartlett, "Have Ab Initio Quantum Mechanical Appiications Finally
Arrived?", Tulane University, New Orleans, LA, October 8, 1979.

R. J. Bartlett, "Have Ab Initic Quantum Mechanical Appiications Finally
Arrived?", Millsaps College, Jackson, Mississippi, October 10, 1979.

R. J. Bartlett, "Have Ab Initio Quantum Mechanical Applications Finally
Arrived?", University of Arkansas, Little Rock, Arkansas, October 12, 1979.




- e, e -~
e T e o a a . e Lt ew e

—

-~

e e

bl " ¢

a

s Sy U CGR TOE TN

—

12

Presentations (1978)

R. J. Bartlett, "Molecular Applications of Many-Body Perturbation Theory",
invited talk, American Conference on Theoretical Chemistry, Boulder, Colorado,
June 29, 1978.

R. J. Bartlett, "Theoretical Contribution to the Plume Enhancement Problem",
invited talk, High Altitude Infra-fed Radiation Workshop, Air Force Geo-
physics Laboratory, Lexington, Massachusetts, August 3, 1978.

R. J. Bartlett, "Beyond Hartree-Fock: Perturbation Theory", invited talk,
at the National Resource for Computation in Chemistry Workshop on "A Study
of Post Hartree-Fock: Configuration Interaction", Berkeley, California,
August 14, 1978.

R. J. Bartlett, "Many-Body Perturbation Theory and Coupled Cluster Methods
for Molecules", Department of Applied Mathematics, University of Waterloo,
Waterloo, Canada, November 13, 1978.

R. J. Bartlett, "Is Size-Consistency Important in Molecular Calculations?",
Introductory Lecture, Sanibel Symposium on the Quantum Theory of Matter,
Palm Coast, Florida, March, 1978.

R. J. Bartlett, "Is Size-Consistency Important in Molecular Calculations?",
Midwest Theoretical Chemistry Conference, April, 1978.

G. D. Purvis, "Comparison of RHF and UHF Based Correlated Methods for the
N2 Potential Curve", Midwest Theoretical Chemistry Conference, April, 1978.

G. D. Purvis, "Comparison of RHF and UHF Based Correlation Methods for the
N» Potential Curve", American Conference on Theoretical Chemistry, June 28,

1978.
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Publications (1980)

R. J. Bartlett and G. D. Purvis, "Molecular Applications of Coupled Cluster
and Many-Body Perturbation Methods", Proceedings of Nobel Symposium on
Many-Body Theory, Physica Scripta gl 255 (1980).

R. J. Bartlett and G. D. Purvis, "Electron Corre]at1on in Lar?e Molecules” .
in press, Proceedings of New York Academy of Science. (Append

G. D. Purvis and R. J. Bartlett, "Reduced Linear Equation Method in Coupled
Cluster Theory", to be published, J. Chem. Phys. (Appendix B)

L. T. Redmon, G. D. Purvis, and R. J. Bartlett, "Correlation Effects in
the Isomeric Cyanides, HNC-+HCN, LiNC«+LiCN, and BNC«—BCN", J. Chem. Phys.

72, 986 (1980).

G. Adams, G. Bent, R. J. Bartlett, and G. D. Purvis, III, "Formaldehyde:
Electronic Structure Calculations for the S0 and Ty States“, J. Chem. Phys.,
in press.

Publications (1979)

R. J. Bartlett, I. Shavitt, and G. D. Purvis, "The Quartic Force Field of
Ho0 Determined by Many-Body Methods that Include Quadruple Excitation Effects"”,
J. Chem. Phys. 71, 281 (1979).

L. T. Redmon, G. D. Purvis, and R. J. Bartlett, "Accurate Binding Energies
of Diborane, Borane Carbonyl, and Borazane Determined by Many-Body Perturba-
tion Theory", J. Am. Chem. Soc. 101, 2856 (1979).

R. J. Bartlett and G. D. Purvis, "Molecular Hyperpolarizabilities I.
Theoretical Calculations Including Correlation", Phys. Rev A20, 1313 (1979).

G. Adams, G. Bent, G. D. Purvis, and R. J. Bartlett, “The Electronic
Structure of the Formyl Radical, HCO", J. Chem. Phys. 71, 3697 (1979).

G. D. Purvis, and R. J. Bartlett, "The Potential Energy Curve for the X]E

State of Mgi Calculated with Coupled-Pair Many-Electron Theory", J. Chem. 9
Phys. 548

(1979).
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Publications (1978)

R. J. Bartlett and G. D. Purvis, "Many-Body Perturbation Theory, Coupled
Pair Many-Electron Theory, and the Importance of Quadruple Excitations for
the Correlation Problem", Inter, J. Quantum Chem. 14, 561 (1978).

J. W. Kenney, J. Simons, G. D. Purvis, and R, J. Bartlett, "Low-Lying
ETectronic States of Unsaturated Carbenes", J. Amer. Chem. Soc. 100, 6930
1978).

L. T. Redmon, G. D. Purvis, and R. J. Bartlett, "The Unimolecular Isomeriza-
Eion ?eaction of Methylisocyanide to Methylcyanide", J. Chem. Phys. 69, 5386
1978).

R. J. Bartlett, "Perturbation Theory", Post-Hartree Fock: Configuration
Interaction Workshop, NRCC, LBL-8233 (1978).

G. D. Purvis and R. J. Bartlctt, "The Potential Energy Curve for the X1£ *

State of Mgy Calculated with Many-Body Perturbation Theory", J. Chem. Ph?s.
68, 2114 (1978).
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IV. SYNOPSIS OF ORBITAL OPTIMIZATION IN COUPLED CLUSTER THEORY

A new idea which has been developed over the second year of this
grant is the optimization of molecular orbitals while simultaneously carrying
out coupled cluster calculations. This approach is similar in philosophy
to multi-configuration self-consistent field (MCSCF) theory, but differs
substantially in numerous other respects.

The traditional MCSCF approach takes a small number (typically
5-20) configurations which we will designate as {Dk}, composed of a set

of molecular orbita]s,{xi}. The wavefunction then takes the form

mescr = E 0y

where each Dk is a determinant (or symmetry adapted combination of

determinants) of the general form

D, = Alxq(1)x,(2)...x (1)..xp(3) .o ox, ()

a

Various replacements (like x,(i) and xp(J)) of molecular orbitals

which are occupied in D] (often the SCF determinant) give rise to the
usual CI single, double, etc. excitations. The linear coefficients Ck
are optimized by using the variational principle in a small CI eigenvalue
problem. This is the multi-configuration step. The SCF part occurs when

the coefficients {c,} in the molecular orbitals {Xi}’

for ¢, some primitive, usually atomic orbital basis set, are also simultaneously

optimized. This procedure is particularly useful in types of open-shell
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problems, and in descriptions of bond breaking when the form of the
molecular orbitals can change significantly.
However, there are a number of disadvantages with the MCSCF
method. The small number of configurations have to be carefully chosen
if correct answers are to be obtained and this requires a difficult and
time consuming trial and error procedure. As a consequence, MCSCF methods
have notoriously bad convergence properties.
The most important weakness from our viewpoint pertains to MCSCF's
failure to be size-extensive. That is, the calculations do not scale
properly with molecular size. This occurs due to the method using a
variational CI step, which makes it suffer from the same weakness as any
truncated CI, inspite of optimizing the orbitals. MCSCF's failure to be
size-extensive causes problems ranging from decreasing its applicability
to large molecules to correct predictions of dissociation energies. The
various difficulties encountered with nonsize-extensive methods are documented
in detail e]sewhere.(11’21)
Recently, a series of papers have appeared that develop an approach
for efficiently optimizing the orbital coefficients,{cy}, and the CI

(

coefficients {ck} simultaneously. 33-39 This approach exploits an idea due to

Levy\JS)

of using, unitary exponential operators to perform the orbital
rotation. The same approach can be used within the coupled-cluster framework
which will have the advantages; (1) that all results are size-extensive; and
(2), that the configuration expansion is not just a few determinants, but

consists of all single, double, and (via the nonlinear coupled cluster Scheme)

the quadruple excitations.
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Consider the hamiltonian H, related to the usual electrostatic

hamiltonian by
H = UTHU (1)

where U is a similarity transformation, which we will choose to be unitary.

The unitarity ce~ be ensured by defining
in K
U=¢e '"=¢e . (2)

For n a hermitian operator, which makes « skew hermitian (i.e., = -«),

H = e “He" (3)
where
. .0yt
Kk = I KrS(XY'XS XSXI") . (8)

r>s

The eigenvalues of any hamiltonian of the form in Egs. (1) and (3) are

unchanged by the transformation, so this transformedH may be treated

just as the ordinary hamiltonian, although an additional degree of flexibility

is introduced by the transformation.

Employing the coupled-cluster ansatz,

T
Yoo T € I¢o>
T=T +T,+ ...
= 1 abc... Fytyt
T, 1/n.ztijk... xaxbxc...xkxjxi (5)
- _
- ,.,__,,,,{' - -
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for ¢, @ single determinant reference function and Yee intermediately
normalized, we can back-project wCC onto a sufficient set of single, double,

etc., excitations to give the CC equations,

a; + ] bysty jzk ikttt ; I d 0 (6)

3 K1 gttt
for the various amplitudes {ti} in the operator T. The guantities ;s
bij’ cijk’ etc. are combinations of integrals relative to the molecular
orbital basis set.

If we 1imit ourselves to T=T2, then we obtain the coupled cluster
doubles (CCD) model, which terminates Eq. (6) after quadratic terms, and
requires that we determine as many amplitudes tk = t?? as there are distinct
double excitations. If we approximate T=T1 + T2, then T1 will occur to the
fourth-power, T2 guadratically, and the coupling terms T]T2 and T]ZT2 will
also contribute. In this case, we have both the single excitation amplitudes,

t?, and double-excitation amplitudes to obtain. The energy is given from the

Schrandinger equation by

) T
E = <ogltliee>  <ogfnefog> (7)
=1 <ijllab> t 4 T <in fastd
> A ICT L
a>b

+ 1] <iillag> 2 +1/2 ] 1 <id]Jab> t5e)

ia J 1 ia j,
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or

.. ab ab . a
E = .z‘ <1\]Hab>(ti3- + titj) + .z <1'fla> ti H (8)
1>] 1,a
a>b

wrere the usual Fock operator expression is introduced.

Eq. (8) provides the energy given the amplitudes for double

excitations, t??, and single excitations t? determined by Eq. (6). The

molecular integrals and amplitudes in Eq. (8) pertain to the molecular

orbitals associated with the transformed hamiltonian, H. These orbitals

—

are permitted to change to assume a more optimum form by exploiting the
transformation in Eq. (3). Since the coupled cluster results are invariant
to any unitary transformation that only mixes excited orbitals (i.e.,
a,b,c,d,etc.) or occupied orbitals (i.e., i,j,k,1, etc.) among themselves,

the changes due to the transformation arise by mixing the occupied orbitals

with the excited orbitals. The transformation matrix {Krs} can be
determined from the Hansdoff expansion by imposing a stationary condition

on the orbijtals.

s

From Eq. (7) and Eq. (3), we have

- —-——

vl
? £ =< 'E-KHGK, >
j ' ¢’0 wCC * (9)
j Invoking the Hausdorff expansion through terms second-order in «,
¢ '
L X
li‘-‘
. l E = <¢O(H{wcc> + <¢0([H,r<]['ucc>+1/2<¢olf[H,K].<][wcc ) (10)
2
o} l
¥
3 .; I
y
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The stationary condition is accemplished by varying E with respect to the

operator «. Hence,

$E=0= <o |[Hiscllvge> + 172 <¢ol[[H,6K]K]|wCC>

(11)
+1/2 <o | [HoxTocTlwee>
Eq. (11) defines the matrix elements, Kpg? in the operator «, via
3E 4L + +
e = 0= ool Ty X Xg-X X Tluce>
rs
+ +
+1/2 <¢>o|[[H,XrXs - XerJKJIwCC> (12)

+

Since « appears linearly in Eq. (12), by working out the
commutator expressions, an equation for the matrix elements {Krs} is
obtained. With these quantities defined, the transformation matrix in
Eq. (1), U = €5, is determined. Hence, Eq. (12) provides « for stationary
values of the energy (assuming the transition state form). This defines
a new set of molecular orbitals, b, = ) ¢vUvu' A1l molecular integrals are
transformed to this new set. Then the coupled-cluster equations, Eq. (6)
can be solved again for the transformed orbitals. Successive repetition
of this procedure should give a coupled-cluster solution with an improved

molecular orbital basis set.




Since,

= ellg> =1+ TpT, + 1/21% + 12Te + Tk o > (13)

the transition state formula of Eq. (10) only permits T.I and T2 to occur
linearly in the determination of «, since the other terms would have vanishing
matrix elements with |¢°>. This seems like a reasonable approximation for most
problems, but in pathological cases the quadratic and higher terms become
increasingly impor* nt, and it is just such pathological cases, where the
orbital optimization is most useful.

Alternatively, variational expressions of the form
E = <wgele™He  [uge>/<vecluge> (14)

can be employed to determine equations for the {Krs} matrix elements.
This has the advantage that a rigorous upper-bound expression is s
so the orbitals should be "better"”, and that higher powers of T operators

would contribute to this determination. But it is still necessary to truncate
the Hausdorff expansion. Hence, the method is at best quasivariational.

Furthermore, it is not clear at just what levels appropriate for the

trunction of T or «. Additional problems pertain to T being a non-

hermitian operator while « has to be chosen-to be hermitian to maintain

the unitary transformation property, and that unlike the usual coupled-cluster
equations, whose commutation using the normal T, i.e., e'THeT|¢O> terminates at
four-fold commutations, a unitary T or « operator requires an infinite

commutator series.
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We are currently investigating the relationships among the several
different ways of imposing variational conditions on the orbital optimized

coupled-cluster equations.
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ABSTRACT

A goal of quantum chemistry in biomedical sciences is to provide
accurate calculations of molecular interaction among biochemical molecules,
drugs, carcinogens, etc. In this effort, there is a natural progression from
semi-empirical quantum chemistry, to ab initio self-consistent field theory,
to methods that properly include electron-correlation. As ab initio theories
continue to develop, many more problems of biomedical interest can be
addressed by accurate correlated methods. The intent of this contribution is
to discuss many-body approaches to the correlation problem, i. e., many-body
perturbation theory (MBPT) and coupled-cluster methods (CCM). Unlike most
configuration interaction (C1) methods, MBPT/CCM offersa number of important
features in the extension to larger molecules. These include the proper
dependence of the correlated calculation on the size of the molecule (i.e.,
size-extensivity). This has significant consequences for predictions of
ground and excited-state properties. These features will be illustrated by
applications to selected molecules. It will be demonstrated that MBPT/CCM
offers a natural generalization of SCF theory that is formally suitable for

applications to some of the molecules that occur in biomedical studies.




I, INTRODUCTION

In the applications of quantum chemical methods to problems involving
biochemical molecules and their interactions, there is a natural progression
from empirical or semi-empirical models and methods to ab initio self-consistent
field (SCF) approaches, and eventually, to ab initio approaches that properly
include the effects of electron correlation. The purpose of this contribu-

(1-15) (5., many-body perturbation

(4-7)

tion is to discuss the many-body methods

(1-3) [MBPT] and coupled cluster methods

theory [ccM]) for including
electron correlation. The emphasis is on the advantages that these methods
offer over the more traditional configuration interaction (CI) approaches in
large molecule applications.

Semi-empirical models and methods, which should be used synergistically
with experiment, are most properly employed to investigate trends among a
series of similar molecules. Such methods can be used for rather large
molecules relatively inexpensively, and are thus finding wide use in bio-
chemistry and particularly in drug design.(]s'zo) On the other hand, in principle
ab initio methods can provide hard, quantitative results for molecular systems,
which can be potentially used to complement various experimental methods by
providing answers to classes of problems that are not as amenable to experiment.
An example would be identifying the transition state and activation barrier
in a reaction.

In practice, however, ab initio quantum chemistry suffers from
severe limitations, that have only permitted highly accurate results to be

obtained for comparatively small molecules. These limitations are basically

of three types: (1) Number of degrees of freedom in molecular systems;
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(2) limited size of basis set that can be used; and (3) required degree of
accuracy of the ab initio approach.

In the first category, the problem essentially revolves around
the Born-Oppenheimer (or fixed nuclei) approximation, since the calculation
of the electronic structure and energy must be repeated for each choice of
coordinates for the nuclei. Limitations (2) and (3) pertain to each of these
calculations while limitation (1) refers to the number of times the calcula-
tions must be repeated. For example, mapping out a potential energy surface
for even a four-atom system with 3N-6=6 degrees of freedom, and computing
10 points for each degree of freedom, would amount to a million calculations.

In quantum biochemistry, fortunately, one is not often interested in a complete

energy surface, but usually only a few crucial bond lengths and angles that
need to be optimized, but this is still a formidable problem. The development
of SCF(21'23) and correlated gradient methods(24'26) is a welcome addition to
the quantum chemist's repetoire, but even these techniques are only applicable
to a few degrees of freedom.

To take an example in quantum biochemistry, consider a solvated
molecule where it is recognized that the soivation characteristics are
partially responsible for the conformation of the molecule which can directly
affect a highly specific interaction. The only feasible approach to such
a problem at present is the determination of analytic model potentials of the
Lennard-Jones, generalized Morse, and other types, with parameters deter-

mined empirica]]y,(27)

or perhaps from highly accurate quantum chemical
calculations of the component pieces of the larger system.(za’zg) Then,
these potentials can be used to handle most of the dynamical movement of the

molecule and solvent, allowing the more accurate quantum chemical methods
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augmented by gradient techniques to focus on the most crucial active site
interactions. The results of this procedure, however, are no better than
the accuracy of the individual calculations which are subject to limitations

(2) and (3).

In Figure 1 is shown a schematic drawing that illustrates the
dependence of an ab initio quantum chemical prediction on basis set and
calibre of method. Just improving the basis set or method is not enough,
but rather a systematic improvement in both is required.

Considering the basis set problem first, and depending upon the
property of interest, it is a matter of opinion at just how many basis
functions are required to obtain good SCF results for molecules; but, certainly
one would want at least a minimum basis set of one Slater orbital (or contracted
Gaussian orbital, i.e., SZ - single zeta) for each electron and probably two
(DZ, double zeta) or more (DZP, double zeta + polarization). The number of
molecular integrals needed to do an SCF calculation rises formally as n4
where n is the number of basis functions although for sufficiently large
molecules this dependence can be reduced to nz. The largest SCF calculations
which have been done employ no more than 300 functions. This imposes a
1imit of at most 300 electrons, or more realistically ~100 to 150 electrons
explicitly considered.

The problem is further compounded when electron correlation is
included. Except for second-order perturbation theory which will be considered
in more detail in Section IV, correlated methods have a dependence on the
number of basis functions of wns. Again, it is possible to reduce this by

maybe two-orders of magnitude for sufficiently large molecules, but it is
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evident that even fewer problems can be studied at the correlated level than

at the SCF Tevel.(30-31)

There has yet to be a really good idea for eliminating the basis

set problem in quantum chemistry. Completely numerical SCF calculations

(32)

have only been accomplished for a few diatomic molecules, and nothing
of general utility has yet emerged. At the cost of using unrealistic

potentials, the numerical procedures of the type used in MS-xuhave had some

(33)

success. From the viewpoint of basis set quantum chemical computations

the development of effective potentials for the chemically inert electrons

(34-38) (39)

in heavy atom molecules is very useful. Also, Gaussian lobe functions

chosen to represent the bonds in a molecule rather than located on the

various atomic centers have reduced the number of basis functions while

(40)

simplifying the calculations of the integrals.
(31)

Various integral

approximations and other clever schemes can also aid in making the calcula-

tions more efficient, but the basis set problem remains a fundamental limitation.
The third Timitation above, as illustrated in Figure 1, pertains to

the degree of accuracy of method that is required for the property of interest,

which is the main concern of this contribution. Generally, SCF theory is

considered to be adequate (+ 10%) for molecular conformations, equilibrium

molecular structure, and first-order properties, i.e., properties obtained

as an expectation value over the SCF density, such as the electrostatic

potential or dipole moments. On the other hand, correlated methods are

considered absolutely necessary to predict electronic and photoelectronic

spectra, to study binding energies and other thermochemical quantities in
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reactions where bond breaking is occurring; and,most second- and higher-order
properties like polarizabilities, sheilding constants, magnetic succeptibilities,
etc. Since many questions in quantum biochemistry revolve around one or
another of the properties that need an accurate treatment of electron correla-
tion, it is important to consider the characteristics that a correlated method
should have if it is to be applied to the large molecules that occur in
quantum biochemistry.

A few desirable characteristics for such a correlated approach

are that the method should be

® size-extensive: (i.e., should scale properly with the size of molecule)
o generally applicable to a wide class of problems; (i.e., avoid
specific formulations or choices of configurations.)
e efficient and cost-effective (i.e., provide large correlations
corrections inexpensively)
e applicable to open-shells and excited states;

e able to correctly separate a molecule into its fragments.

Another condition that one might expect is that the method be variational,
giving an upper bound for the total energy. Lacking a coordinate lower bound,
we believe this is an unnecessary restriction since the quantities of interest
in quantum chemistry are invariably energy differences like binding energies,

which possess no rigorous variational properties even if the individual

calculations are variational. Furthermore, except for a full CI, and a few
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other isolated cases (generalized valence bond, GVB(4]), e.g.) a variational

requirement is not consistent with the size-extensive condition above, which
is felt to be much more important to satisfy for large molecules.
At the present state-of-the-art in correlated theory, the first

three conditions are easily accomplished with MBPT. Any approach based upon

—_—

the linked-diagram theorem is size-extensive. A large class of problems can

| be studied with single reference MBPT/CCM calculations provided that RHF

v T TN

' (of a UHF open-shell solution) is an adequate starting point.
For the cost-effective property, it will be shown that second-order perturba-
tion theory, which is the simplest MBPT approximation, typically accounts

for 30 percent of the correlation energy in a basis set and significantly ;

i e e ———

i improves the SCF predictions of dissociation energies and molecular geometries.
Since this requires only marginally more effort than an SCF calculation, since
it is size-extensive,and has rather general utility, it is a very attractive

lowest-order approximation.
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The fourth requirement can be handled with many-body approaches such

- =

as equation-of-motion techniques,(42-44) or with CI, and the fifth
js currently most easily achieved using CI methods. In the last case, the

MBPT/CCM theory exists for this problem, but has not yet been implemented

(45-47)

in a general purpose program, In many cases, a UHF reference func-

tion will permit correct separation, but the path toward the separated limit

(9) |

is not always accurate.
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In Section II, the size extensive property of MBPT/CCM will be
discussed in some detail since this is an extremely important condition
for potential applications of correlated methods to large molecules.
Section III will present a brief discussion of the ideas in many-body theory
that are important for large molecules, while the final section will focus on
some applications to benzene to demonstrate the nature of correlation effects
due to higher excitations in this rrototype system. In this section emphasis
will also be placed on the accuracy of the simplest approximation, second-order
perturbation theory, which typically provides a very large part of the electron

correlation effect as an inexpensive by-product of the SCF calculation.




oy TRl g euy N G I TS S .- .

1. SIZE-EXTENSIVITY IN MOLECULAR CALCULATIONS

Probably the best way to illustrate the importance of quantum
mechanical methods that scale properly with the size of a molecule is to
consider the model problem of a lattice of separated electron pair bonds,
such as H2 molecules, since this serves as a first approximation to any large
molecule. This problem has been worked out by several investigators,(48’49’]])
but it is pertinent enough to the discussion that it is worth presenting a
version here.

Assume the H2 molecules are sufficiently far apart or separated
by barriers so that they can be considered to be noninteracting. For sim-
plicity, we will further assume that the component set of molecular orbitals
for each H2 molecule are natural orbitals so that single excitations in the
H2 wavefunction need not be considered. Then the intermediately normalized
wavefunction for each molecule i, may be written,

M) = M) + M W
where ¢2(i) is the first natural determinant (close to the Hartree-Fock
solution) and XM(i) ijs a sum of doubly-excited determinants including their

appropriate coefficients. The norm of the function in Eq. (1) is 1 + S, where

(2)

(3)




The wavefunction for the lattice is

L

=¥ Moy < My (4)

i A=
-—

1

Antisymmetry is disregarded since the molecules are noninteracting.

With H = LH{i), the energy of the lattice

L _ L!L!L e M
b o
Mo . - .M 1 M.
where E, is the energy of the H, molecule. With g = <¢o(1)|H(1)|Xi(1)>’
2

which is essentially the correlation energy of the molecule,
E, =E. +8 . (6)

A method is said to be "size-extensive" if the total energy calculated by
the method is appropriately linear in N, as in Eq. (5).

Notice that the product wavefunction in Eq. (5) includes quadratic
and higher product terms like xM(i)xM(j), which correspond to simultaneous
double-excitations on different centers. but are quadruple and higher-
excitations in a super-molecule CI description. Since these terms arise
from disjoint double excitations, they are fundamentally simple. but the
standard CI framework is not able to exploit this inherent simplicity. This
causes an innate error in truncated CI that becomes most important for larger

molecules,




-
—— e

-y &

- -

s R -

.
>

—

—— =N

- " o— _— ——

|
|
l
l
|
|
!

10

To investigate this, we can consider a reference wavefunction for the

lattice of the form

N
L _ M, .
¥o =1 ¢°(1) (7)
i=1
with energy
L N M M
E =iz1 E°(1) = NE_ (8)

Using this reference function, the double-excitation CI (D-CI) wavefunction
for the lattice is constructed as

N
L _ L L
*o-cr = Yo * L Y ()
N LM
= ¢0(1) ¢o(2)...¢o(N) +k§] C ¥ox (k)/°o(k) (9)
N
= w; +tc ) WL(k)
k=1

The weighting coefficient, ¢, is the same for each H2 molecule in

a noninteracting lattice. Using the expressions,

SUO I ERER I (10)
Mooyiul M, . M
<X (7),H X (J)> = 51-J-[EH25-B] s
AE = EL-NEz
- - - — “<i'; - -

L bt b A o e
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N
it follows that
b (k) = g ()
(k) HE|eh(e)> = 6, INSEN + (s-1)8] . (12)
From these matrix elements, the D-CI secular equation becomes
AE - Ncg = 0 (13a)
{8 -~ [SAE + (S-1)8lic=0 . (13b)
Solving Eq. (13) simultaneously for AE and c,
- . Y eff .
AED-CI = g| -(1-S)+ /fﬁ-s)4A+ 4SN) . N s a3 (14)

The positive sign is required since AE<o and g<o0. Since the correct
AE = Ng, D-CI is not size-extensive.

With the aid of a value for S in Eqs. (2) and (14) it is possible to
get some feel for the size of these effects. From a natural orbital study by

(50) (31)

Davidson and Jones of the 50 term Kolos-Roothaan wavefunction for H2

at R = 1,40, S for H2 is 0.0181. Some representative values are shown in

Table I, along with values for a lattice of He atoms for comparison (SHe=0.0083).
It is apparent that the error in the correlation energy as determined by D-CI

can be significant even for modest numbers of electrons. It is also apparent

that the errors are greater for typical covalent bonds than inner-shell electron
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pairs as in He atoms. In fact, we will find that Table I can provide
a rather accurate estimate of the effects of higher excitations simply
by counting the number of electrons in covalent bonds and inner-shell
electron pairs.

Since the product terms xM(i)xM(j) correspond to quadruple
excitations in a super-molecule CI, while triple products are hextuple
excitations, etc., the size-extensive property of MBPT/CCM, that is a

(1,2)

consequence of the linked-diagram theorem, is essentially a result of

a more proper treatment of quadruple and higher excitations than in CI.

Hence, a statement that size-extensivity is important in correlated

calculations, is equivalent to the statement that quadruple and higher-
excitations are important. Since the number of configurations in CI are
proportional to the number of basis functions raised to the level of

excitation included, the number of quadruple excitations generated from 100 basis
functions would require w(100)4 or 108 configurations. Hence, better
computational methods for including effects of higher-excitations in

correlated calculations are extremely important. Many-body methods tend to

take the intelligent viewpoint that removing the erroneous terms (i.e., unlinked
diagrams) in D-CI is preferable to including higher-excitations. In practice,
this viewpoint leads to computationally more tractable equations that are

closer to those in D-CI.(7)

Since the correct density is in error by the neglect of the product

s}
terms in the wavefunctions, further analysis discussed e]sewhere,(4‘)

demonstrates that the density matrix obtained from a truncated CI reduces to

g . - —r————
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just the density computed from the reference function. If the latter is

an SCF function we have

Lim TCI SCF
p =p

N (15)
L fysd (49)
Similarly, for an excitation energy,
tim (ECT - g1 = 56 - £36F (16)
N-o
Hence, size-extensivity affects more than the total energy.
One additional consequence worth mentioning is that in a typical
reaction,
A+B + C+D a7)

the heat of the reaction, aH_ = AHf(C) + AHf(D) - AHf(A) - AH.(B).

However, if these individual quantities are determined by a truncated CI

this simple addition is not entirely justified, since the truncated CI
ignores the simultaneous excitations that prohibit AHf(C+D) at RCD*“ from
being AHf(C) + AHf(D). In practice, this frequently requires that one
compute the super-molecules C + D and A + B in CI to make the energy
difference most accurate. This should be contrasted to predictions made with
a size-extensive method where a table of results for species obtained at a
given level of approximation may be added and subtracted just like the

experimental values.
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IIT. SYNOPSIS OF MANY-BODY THEORY

The theory of MBPT/CCM has been discussed in detail in several

(1-7) In particular reference [7] provides a fairly detailed mathe-

places.
matical description from the viewpoint taken in this article. The theory

as originally developed, uses second-quantization and diagram techniques,
which are unfamiliar to many-quantum chemists, and this tends to camouflage
the important concepts that emerge from the many-body approach. Instead of
presenting any detailed mathematical development here, we will sketch the
basis for the two significant concepts that emerge from MBPT/CCM, namely

the 1inked-diagram theorem, which guarantees size-extensivity, and the cluster
decomposition of CI excitations into separate, more physically satisfying
pieces that lead to tractable equations for including the effects of higher
excitations. Consult reference [7] for detailed equations, and the original

(1-6)

references for the complete formal development. For simplicity, in the

following we will 1imit ourselves to a single reference function such as an

unrestricted Hartree-Fock (SCF) solution. Various versions of the multi-

reference function theory are avai]able.(45'47)
It is well-known that one way to solve a CI eigenvalue egquation

is with perturbation theory.(sz)

Using the Rayleigh-Schrodinger form, we
can separate the hamiltonian H = Ho + V, where H, is the sum of the SCF

one electron hamiltonians and V is the two-electron part minus the SCF effective

one particle hamiltonian, then we have
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Hoq’o } E0¢°
abc.. _ pabc.. jabc (18)
Ho Dijk" = Eijk" Dijk"'
for % the SCF solution, and D??E"' the various determinants that can be
formed by replacing occupied SCF orbitals with excited SCF orbitals. The
CI eigenvalue through fourth-order, then becomes
- ! -
£ = E°+ <¢-dV|¢°> + <¢°|VR0V|¢O> + <¢0|VR0(V <V>)ROV,¢°> (19)

2
+ <4y [VR (V-<V>) Ro(V-<V>) RVIe,> - <¢°|VR°V|¢°><¢0|VR2V|¢°>

The resolvent, Ro’ has the expression

o = InniE -ty [n>"! <t

abe...
ij ...
is formally complete, STater's rules for matrix elements chooses from all

where |h> is composed of all the CI excitation D . Even though |h>
possibilities only the few that have nonvanishing contributions.

Subject to an SCF reference function, only double-excitations can
mix across V with 9> SO the second- and third- order terms in Eq. (19)
involve only double-excitations. The first of the two terms in fourth-order,
however, can mix single, double, triple, and quadruple excitations at the
middle Ro’ although the second fourth-order term (i.e., the renormalization
term) still has no contributions except from double excitations.

From the model problem of separated H2 molecules presented in
the previous section, it is easy to check whether each of the terms in
Eq. (19) is size-extensive. Considering the second-order energy of the H2

lattice
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L = ~
Es = <¢°|VR°V|¢O,

as an example, we have from Slater's rules

L Rocc Mexc 9
EZ =1/4 'IZJ azb |<ij]|ab>| Ne; + €§ ~ €a T &p) (22)

The notation <ijf|ab> = <ij|ab> - <ij|ba> = (talbj) - (iblaj), and {e;}and (e}

are the SCF orbital energies for theoccupied'and excited orbitals, respectively.

Using a Tlittle algebra,

L TRY s rs
;=2 [ 1 [(ia]jb)” - (fa|jb) (iblja)le; + 25 = ¢, - ) . (23)
i<j a<b
Since this expression is invariant to any unitary transformation among
degenerate orbitals, we may choose the orbitals to be localized on the

H2 molecules in the lattice to make the argument most transparent. In this

case the only nonvanishing integrals have the charge distribution (ia), (jb),

(ib) or (jc) on the same H, molecule, otherwise the terms would vanish.

Hence, it follows that

L _ oM
5 = NEj (24)

and second-order perturbation theory is size-extensive. It can be similarly

shown that this is also true for E3.
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Now consider fourth-order . The renormalization term is composed

of an E, term and a similar term a = <¢0|VR§V|¢°> which differs from E, only

2
by having the denominator squared. Since

Es = ng‘, U (25)

The product of the two has an N2 dependence, which is erroneous. If E4 is

to be size-extensive, the first term in E4, must also have an equal and
opposite N2 dependence to cancel out these uncharacteristic terms.  The single-,
double-, and triple-excitation contributions to the first part of E4can

be shown to be si;e-extensive. Hence, to resolve the problem, it is necessary
to consider the quadruple excitation contributions. Following a great deal of

a1gebra£7 ) the quadruple excitation part, Eg,may be written in the form,

Eg = E,b +Q (26)

where Q is properly size-extensive. Hence, EZA cancels the renormalization

2

term and with it, the erroneous N dependence. This is the substance of the

linked-diagram theorem. The algebraic analysis that leads to Eq. (26),
represents Q as linked diagrams, while E2A corresponds to unlinked diagrams.
A similar analysis will apply in all higher orders which is the linked-

(2)

diagram theorem. This provides the expression for the energy,

-3

AL <oy VL (E,=H) VI (6 5, (27)

where L 1imits the terms to only linked-diagrams.
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It should be evident, that if quadruple excitations had not
been included in E4, then the EZA term with the erroneous N2 dependence would
remain. This is exactly what happens when a truncated CI calculation is made.
Limiting the configurations to single- and double-excitations, for example, will
necessarily retain these erroneous terms destroying the size-extensivity of
the method. If quadruple excitations were to be included in the CI, the result
would be size-extensive through fifth-order, but would fail in six and higher-
orders due to hextuple excitations. On the other hand, any approximation to
the linked diagram theorem, Eq. (27), is size-extensive. This means that even
second-order perturbation theory can be much better than very good CI calculations
for sufficiently large molecules.

For small molecules, multi-reference CI techniques, that incorporate
at least the most important quadruple excitations as double-excitations from
a double-excitation reference space, will be size extensive for most practical
purposes. GVB calculations are size-extensive, but GVB-CI will be only approxi-
mately size-extensive unless all excitations into the GVB orbitals are included.
Since GVB provides a better choice of orbitals than SCF, and since one includes
higher-level excitations than is normal in SCF based CI approaches, GVB-CI
will usually be closer to size-extensive than other CI methods. An added
advantage is that within the GVB method it is often possible to ensure
correct separation.

The other important idea developed in many-body theory is the
cluster expansion of the wavefunction. The basic concept is that the correct
wavefunction may be written as eT|¢o>, where T is an operator. This form of

the wavefunction ensures the linked-diagram, size-extensive basis of the theory.




Then T has the form

T = T] + T2 + T3 + ... (28)

where T], T2, ... are one-body, two-body, ... cluster operators. The T2

operator generates double-excitations with amplitudes to be determined by

(5-7)

the coupled-cluster equations, but the exponential form

el =T+ 17218 4 T3 4 .. (29)
causes some very different things to happen than in the CI approach. To see

this, consider the CI operator for quadruple excitations, C,. By equating
4

the CI and coupled-cluster expressions for the quadruple excitations, we have

- 2 4 2
Cqg = T4 +1/2T, + 1/4 T.I +1/2 'I'.| T2 + T1T3 . (30)

Physically, what does this mean? Roughly, T4 represents an interaction
among four electrons while Tg represents two simultaneous interactions of
two electrons. A transformation to Brueckner orbitals makes T] vanish, while
T1 is usually small even for SCF orbitals so the final three terms are
negligiblemost of the time. Since the normal electrostatic hamiltonian has
no more than two-electron operators, simultaneous two-electron interactions
would seem to be much more frequent in molecules, than "true" four electron
interactions. From another viewpoint, the NH2 lattice problem emphasizes

the neglect of simultaneous double-excitations on different Ho molecules,

which is exactly what T% offers. Thirdly, from perturbation theory, it may

2 (7)
2!

be shown that all the fourth-order quadruple excitation terms arise from T
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with T, only contributing in fifth- and higher-orders. Consequently, it

4
was suggested by Sinanog]u(14)

that C4 = 1/2T§ is a very good approximation.

Using this ansatz, we have the coupled-cluster doubles (CCD) approximation
T

for the wavefunction, e 2[¢0> . This leads to a set of nonlinear equations

for the T2 amplitudes but there are only as many of these amplitudes as in

5,7 , . ) .
( ) This provides the benefit that we have a size-extensive method; it

a D-CI
is infinite-order although restricted to TZ’ and we have no more amplitudes
that in a D-CI calculation even though the effect of quadruple excitations

are included. Since CCD reduces in fourth-order perturbation theory to double-
and quadruple-excitation diagrams, it is straightforward to solve the CCD
equations as successive iterations of a fourth-order MBPT calculation (7).
Hence, couple-cluster methods may be viewed as complementary to MBPT when
higher-order corrections are needed as can become important in pathological

(9)

cases.
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IV, ILLUSTRATION OF MBPT/CCM RESULTS FOR SOME SMALL MOLECULES

The simplest approximation to the correlation energy in MBPT
(assuming an SCF reference function for simplicity) is given by the second-
order perturbation theory expression of Eq. (22).

Since the molecular orbitals i, j, ...a, b,... and their orbital

energies €43 €45020Es Eps are obtained from an SCF calculation, all the

o
information is available that is needed for a correlated calculation except

for a partial integral transformation, if used. The SCF calculation generates

a set of two-electron integrals relative tc atomic (i.e., primitive) basis
functions, and in the general case an integral transformation is required

to obtain the integrals relative to the molecular orbitals, i.e., <ab||cd>,

which depends on the number of basis functions as n5; or, alternatively, a

direct calculation of E2’ E3, in terms of the integrals relative to atomic
orbitals (probably orthogonalized) is required. In the case of E2, however,

only a very small number of integrals are required, since each integral

involves only two occupied and two unoccupied orbitals. Consequently, E2
requires no more than ngctngxc<"4 operations, or less than in the SCF calculation
itself. In a sufficiently large molecule where the primitive integrals (ag|yé)
vanish unless o« and g are in the same neighborhood as are y and §, and
unless the charge distributions (ag) and (y8) are not too far apart, the SCF
calculations goes as wnz. In this case, evaluating E2 directly in terms of
(28{v¢) will permit a similar simplification, hence E2 can always be

evaluated as a by-product of large SCF calculations at negligible additional
expense.

This approximation is certainly recommended by convenience, but

how reliable an approximation is it for the correlation energy? In Table II
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: , l are shown the fractions of the correlation energy within a basis set given by
L ' Ez, E3. and the fourth-order contributions just from double- and quadruple-
% l excitations diagrams(7’9) for a variety of molecules. Using an SCF starting
i l point, E2 and E3 are solely determined by double-excitations, with single-,

doubie-, triple-, and quadruple-excitations appearing in fourth-order, but
in the interest of also comparing the higher-order corrections obtained by
the CCD (coupled-cluster doubles) approximation, which includes only double-
excitations and the disjoint (i.e., Tg) quadruple-excitations to all orders, the
single- and triple-excitations contributions are omitted from Table II.

It is apparent from the table that the simple second-order approxima-
tion accounts for the vast majority of the correlation energy obtainable

within the basis set. A few generalizations about the results may be made.

In multiply bonded systems such as N2’ €0, and C02, E2 tends to slightly
overestimate the net correlation energy in the basis set, while for
saturated systems like H20, CH4, etc., it is more likely to underestimate the
effect. HCN and benzene are intermediate. In a case where near degeneracy
ol | plays a role such as BH3, convergence of the perturbation theory is much

P slower making E, a poorer approximation. No particular differences are

¢% observed for open-shell molecules when UHF-SCF instead of an RHF-SCF solution
\% is used as the unperturbed solution. On the average, it is clear that E2
;% accounts for 90 percent of the correlation energy obtainable within the
basis set. Since these basis sets are good enough that they account for A70 E
' percent of the "experimental" valence shell correlation energyfg) this means
é E2 gives 60 percent of the experimental valence correlation energy. It is
ji also clear that DQ-MBPT(4) is usually very close to the infinite-order

CCD modelgg) This is a common occurrence except for cases where near degeneracy

habent-), " S5

is a problem.
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In Table III are shown some thermochemical results obtained from Es
compared to higher-order correlation approximations. Although E2 predictions
are not as good as the better approximations, they are clearly superior
to the SCF predictions, again, providing most of the observed correlation
corrections.

A similar result can be obtained for second-order predictions of
molecular structure, where on the average ~50 percent of the error in the

SCF geometries is removed.(ll)

To obtain the exceptional accuracy reflected in Table III and
reported e]sewhere(53 » 54) for various properties of small molecules, it is
necessary to go beyond second-order, but for large molecules, the simplicity
and comparatively high accuracy of this approximation demands that it be
used to augment any large-scale SCF calculation of biochemical interactions.
Benzene serves as a prototype of many of the large, conjugated
molecules that occur in biochemistry. As such, it is appropriate to
analyze the higher order MBPT/CCM description of electron correlation in
benzene to develop some feeling particularly for the effect of quadruple

excitations.

The basis set is a standard Dunning double zeta contraction of
Huuzinaga's 9s5p primitive Gaussian basis for carbon and the two H 1s orbitals
corresponding to a Slater exponents of 1.2, giving 72 CGTQ. The SCR energy
of -230.6369 differs by 0.113 a.u. from the SCF results for a DZP basis and 0.18

a.u. from the estimated SCF limit.(58)

The C(152) electrons are kept frozen
at the SCF level so the correlated calculations only pertain to the valence
correlation energy. Polarization functions are usually found to be more

important for correlation effects than in the SCF calculation itself, so the

current DZ predictions should underestimate the magnitude of
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the valence correlation energy. Even so, it is apparent from Table IV, that
quadruple excitations amount to ~20 percent of the predicted correlation energy.

In an attempt to study the origin of the quadruple excitation effects,
the occupied and excited pi-orbitals were removed and the calculation repeated
to give a value for just the sigma framework excited solely into unoccupied
sigma orbitals. The same procedure was carried out for the pi-electrons.

These results are reported in the second and third columns of Table IV.

The sigma framework accounts for over half of the net quadruple
excitation effect, while the correlation effects of the delocalized pi-electrons
are relatively independent of the quadruple excitations. Since the former
involves 12 roughly independent covalent bonds, from Table I and Eq. (14),
one would estimate an effect of ~14 percent in reasonable agreement with the
calculated 12 percent. The effect of the quadruple excitations on the pi-
electron bond§ is much smaller, but this is primarily due to the fact that only
three bonds are possible. If the appropriate S for the pi-structure were as
small as in He, the estimated effect of quadruple excitations would be 1.6
percent. The remaining correlation effects come from the sigma-pi interactions.
It is interesting that excitation of sigma electrons into pi-excited orbitals
and vice-versa results in ~13 percent of the correction energy.

The DZ basis used here is capable of providing only about 49 percent

of the experimental valence correlation energy.(ss’sg)

(9)

Polarization functions
would improve this result by about 20 percent. Since the quadruple excitations

are also responsible for more than 20 percent of the correlation energy, the

ey o
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size of error encountered in SD-CI is as severe as excluding polarization
functions from the basis set. Since the effect of quadruple and higher CI
excitations will inevitably increase as larger molecules than benzene are

studied, a correlation method that does not account for such effects has

1ittle hope of contributing to the investigation of biochemical interactions.




TABLE I. ERRORS IN D-CI AS A FUNCTION OF N FOR
A LATTICE OF NH» MOLECULES AND NHe ATOMS

H2 He
N Neff % Error in Correlation Neff % Error in Correlation
Energy Energy
2 1.97 1.5 1.98 0.8
. 4 3.81 4.8 3.91 2.4
6 5.54 7.7 5.77 3.8
v 8 7.19 10.1 7.58 5.2
' 10 8.77 12.3 9.35 6.5
20 15.8 21.1 17.6 12.1
P 50 32.0 35.6 38.2 23.6
; 100 51.0 48.0 65.2 34.8
’ 1000 209.5 79.1 292.2 70.8
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TABLE I1II. COMPARISON OF THERMOCHEMISTRY RESULTS
OBTAINED BY SCF AND MBPT WITH EXPERIMENT
[A11 basis sets are at least DZP quality.]

-AE (kcal/mole)

-as gERS oues gueel GER  gEp

Reaction Method SCF E, MBPT/CCD Experiment
i N 2 BH, ~ B, SDQ-MBPT(4)  18.5  37.5  35.6  36.6 + 2
| BHy + CO »H3BC0° D-MBPT(4) 8.0  25.1 20.5  20.4 + 2
BHy + NHy > H3BNH,? D-MBPT(4) 20.5 32.0 30.1 --
HNC - HON® SDQ-MBPT(4)  10.7  18.0  15.0  (10.3 + 1)¢

HNC > [, C1P SDQ-MBPT(4) -33.4  -30.1  -29.5 --

BNC - BCNP SDQ-MBPT(4) -18.9  -9.8  -9.4 -
LiNC » LiCND SDQ-MBPT(4)  -6.4  -2.3  -3.8 --
CHNC »CHCN® SDQ-MBPT(4)  19.2  26.2  22.8  23.7 + 14"
CH,NC [CH3:] c SDQ-MBPT(4) -44  -40  -40 -38.4"

H + €0 Hcod cco 5.8 11.8  13.6  15.7 + 1.5
HCO - [HCo]® cco S12.8 -17.4 -18.1 --

H,CO +H, + CO° cco -7.2 3.9 -3.9 1.9
HyCO +H + HCO® cco .68.6 -82.8 -86.0  86.0 + 1.0°
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3 Reference [53].
b Reference [55]. Square bracket indicates a transition state. :
This result includes a 4 kcal/mole zero point correction !
for the transition state. *

€ Reference [54]. Square bracket indicates a transition state. i
This result includes a 4.8 kcal/mole zero point correlation.
for the transition state.

o

v

' d Reference (561].
€ Reference [57].
f 1. P. Fehlner and G. W. Mappes, J. Phys. Chem. 73, 873 (1969).

9. Maki, unpublished results. Reference [55] concludes that this experi- !
mental value is in error. The result should be 15 + 2 kcal/mole.

h M..H. Baghal-Vayjovec, J. L. Collister, and H. 0. Pritchard, Can. J.
Chem. 55, 2634 (1977).

T F. W. Schneider and B. S. Rabinovitch. J. Am. Chem. Soc. 65, 1794 (1969).
3 p. Warneck, Z Naturforsch A26, 2047 (1971).

k K. Yamada, T. Nagakuru, K. Kuchistu, and Y. Morimo, J. Mol. Spect.
38, 70 (1971).

£ R. Walsh and S. W. Benson, J. Am. Chem. Soc. 88, 4570 (1966).
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FIGURE 1.
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ILLUSTRATION OF THE DEPENDENCE OF AN AB INITIO CALCULATION
ON THE BASIS SET AND ON THE QUALITY OF THE THEQRY

SZ, SZP, DZ, AND DZP ARE RESPECTIVELY SINGLE ZETA,

SINGLE ZETA PLUS POLARIZATION, DOUBLE ZETA, ETC. CONFIGURA-
TION INTERACTION (CI) IS USUALLY ACCOMPLISHED BY ADDING
SINGLE AND DOUBLE EXCITATIONS. MBPT AND CCM IN GENERAL
EXCEED SD-CI IN ACCURACY SINCE EFFECTS OF HIGHER EXCITATIONS
ARE INCLUDED TO SOME DEGREE. MR-CCSD INDICATES COUPLED-
CLUSTER THEORY LIMITED TO eT2+ T2 BUT RELATIVE TO MORE THAN
ONE REFERENCE FUNCTION. THE BEST POSSIBLE SOLUTION IN A
BASIS SET IS FULL CI.
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ABSTRACT

A numerical procedure for efficiently solving large systems of
linear equations is presented. The approach, termed the reduced linear
equation (RLE) method, is illustrated by solving the systems of linear
equations that arise in linearized versions of coupled-cluster theory.
The non-linear coupled-cluster equations are also treated with the RLE
by assuming an approximate linearization of the non-linear terms. Very
efficient convergence for linear systems and good convergence for non-
linear equations is found for a numberof examples that manifest some
degeneracy. These include the Be atom, H2 at large separation, and the
N2 molecule. The RLE method is compared to the conventional iterative

procedure and to Padé approximants.




INTRODUCTION

The basis idea of the coupled-cluster method (1-7) relative to

a single reference function |¢>, is that the exact wavefunction may be

written as v = exp( T)|¢> where

T=T]+T2+... (1)

and the excitation operators {Tn} are

- abc... by tyt
Tn = 1mi} tijk... anch ces kajxi . (2)

By back-projecting ¥ onto ¢ and a sufficient number of single, double, etc.
excitations, non-linear algebraic equations of the form

a; + 18t +1/2!

i I jzk C‘Jktitk M) Dy 5k tstitee- = 0 (3)

Jkst
occur. The quantities {tj} are the amplitudes {tigﬁ"'} of Eq. (2) which
are to be determined, while i, Bij’ cijk’ etc., are simply combinations of

molecular integrals. Unlike eigenvalue equations, the coupled-cluster
equations are independent of the energy attesting to the linked-diagram,
size-extensive natureof the theory.(7)

In most of the applications which have been madéf'lo)the trial function

Yeep * exp(T2)|¢> has been employed, which terminates Eq. (3) after quadratic

terms,
2
Yeep = (1+T2+1/2T2)|¢> . (4)

This model is referred to as coupled-cluster doubles (CCD)S7'9) or by Cifek as
coupled-pair many-electron theory (CPMET).(3’4)




Another model called coupled-cluster singles and doubles CCSD
can be defined by Yeesp = eT]+T2|¢>, which requires that T] be included
through the quartic terms while T2 still appears only quadratically.
Since it is well-known that T] can be completely eliminated by a transforma-
tion to Brueckner orbitals and that Ty is usually small for closed-shell
(or UHF open-shell) SCF orbitals, the full CCSD model appears to be
unnecessarily complex. Consequently, the simpler approximation which
includes T1 only linearly, and which we will refer to as CCSD-1, is

considered. (In Paldus, ggniglg5 ) this is referred to as approximation B).

The trial function then becomes,

= (14T H T, ) e (5)

¥ceso-1 1

In Eqs. (8) and (5) a linearized version excluding the quadratic
terms Tg has also been considered, both as a model and as a first approximation
to the solution of the non-linear equations. In the case of CCD, this L-CCD
model corresponds to the sum of all double-excitation diagrams to all orders,
while L-CCSD includes the single excitation diagram as well. Both models are
size-extensive as required by the linked-diagram theoremfll’lz%f the L-CCD
or L-CCSD wavefunction were used in an expectation value formula to obtain the
amplitudes, the non-size-extensive D-CI and SD-CI models would then emerge.
In general, the quadratic term Tg results in a net positive contribution as
explained e15ewhere$ 7) hence the L-CCD and L-CCSD models, though size-
extensive, often provide correlation energies which are too low for the
basis set. Since most of the other neglected terms like T3 also result in
negative values, however, the net error is normally small, except for
pathological cases usually involving near-degenercies where the damping

effect of the Tg term is quite important{7,13)




Perhaps the most straightforward approach to the solution of
Eq. (3) is to employ iterative techniques. Such successive iterations of

Eq. (3) Tlead to various terms in the linked-diagram perturbation expansion, ,

(3)

therety providing a means to sum classes of MBPT diagrams to all orders.
This iterative method of solution makes it convenient to solve the coupled-

cluster equations with the same techniques that are used to sum MBPT

(7

diagrams. 8 ) The rate of convergence can usually be significantly

enhanced by employing Pade approximanté14’]6&hich are simply resummations
of the energies that come from successive iterations of the equations.
However, there can be some difficulties with a straight-forward iterative
approach.

For example, if the reference function used in the theory were

comparatively poor it is unreasonable to anticipate that good convergence

using a first-order method will occur. This has been demonstrated for N2(17)

(7)

and Be2 , and will occur in almost any case where near degeneracies are

a problem.(]3) A common example in molecular theory is found when employing a
restricted Hartree-Fock (RHF) solution as a reference function at large

internuclear separations, where the RHF function erroneously separates to

ionic products. H2 is a good example of this problem, since the 105

2

configuration becomes degenerate with the 1o_ RHF configuration at large

(18-20)

separations. Also, Eq. (3) has many solutions, so convergence to
undesirable solutions is also possible. In some cases pertaining to

excited states and excitation energies, it is necessary to obtain these

other solutions to Eq. (3)f19’20)

An alternative method of solving Eq. (3) for the CCD case, has also

)

been used.( 5 This method neglects the quadratic term initially, solves

the set of linear (L-CCD) equations exactly (perhaps by matrix inversion or
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by iteration), and then uses a Newton-Raphson technique for the quadratic

(5)

part. A few repetitions of this procedure provides the solution. The

main objection to this approach is that the linear terms tend to be negative
while the non-linear contributions to the solution are positive. A simul-
taneous solution embracing both terms seems to be preferable to exploit the
partial cancellation. In particular, an initial exact solution of the L-CCD
equations tends to provide {tj} that are often far away from the correct CCD
{tj}. In fact, the largest differences between CCD solutions and the L-CCD
solutions occur for pathological cases£7’]3’17) which is exactly where improved

methods of solution are required.

In an attempt to improve the convergence of the solution to the
coupled cluster equations, we have investigated a technique originally
proposed for configuration interaction (CI) eigenvalue equations termed
the reduced partitioning (RP) procedure.(2]'24)

In the CI case, the basic idea of this reduced partitioning
technique is to drastically reduce the effective dimension of a CI eigenvalue
problem, which is typically very large, by making a rectangular transformation
of the CI hamiltonian matrix to a set of m trial functions (where m is small).
The similarity with moment theorygzs) the Lanczos a1gorithm£26) and Davidson's

(27)15 evident. In the following sections we show

method for eigenvalue problems
that it is also possible to use a reduce partitioning approach for linear
equations. We also show that thisreduced linear equation method can be used
to improve convergence for the non-linear equations of the type that occur in
coupled cluster theory.

In the following, this technique is described and illustrated

by application to a few simple cases.




e —— - A———————

I gl VOV RN -

e N OGN s BN W e

G GEE Oty e gEN GV NEN EEN P~

II. THE REDUCED LINEAR EQUATION METHOD

The Tinear approximation to the coupled cluster equation (3) can

be written in matrix form as

a+Bt=0 (6)

"4V

where a and t are column vectors and B is a diagonally dominant square matrix.
In the L-CCD model, t will be a vector with a length equal to the number of
double excitations. For a closed shell molecule with n electrons and N basis
functions, roughly n2N2 excitations are possible. Even if a molecule has
twenty electrons and one hundred basis functions, vectors the length of t can
be conveniently managed on most medium-sized computers.

On the other hand, B is a square matrix and the number of elements
which must be processed depends upon the square of the length of t. In the
L-CCD model, we would have to consider up to n4N4 elements in B - despite
the fact that most of the elements are zero. For the model problem of twenty
electrons and a hundred basis functions, the construction, storage and manipula-
tion of Q as a matrix becomes impractical.

Fortunately, g is constructed from a matrix containing only N4
elements, i.e., the molecular integrals, and efficient programs have been
written which construct the products, like Q£ directly from the N4 elements.
This is implicit in most many-body approaches and has also been exploited

8,29)

in direct (I techniques. Thus, the n4N4 bottleneck is broken by never

constructing B. Instead, a program taking as input a trial vector E(m) and

the N4 integrals directly yields a new quantity £(m+1)

, which is used to
find the solution 5. Since Q is not available, most standard methods for

solving systems of linear equations are not applicable.
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One simple iterative scheme can be derived by partitioning B into

a diagonal matrix 2 and a non-diagonal matrix a. Since D has only the same

number of elements as E. Q can also be managed on a computer. With this partition-

ing, Ea. (2) can be rewritten as

Rt=-2-4% 7)
-1
E=-0 2+ 1) (8)
Eq. (4) is easily changed into a first-order iterative equation
(m+1) _ -1 (m)
£ =R et (9)

(m) (O) = Q.

where t is the mth iteration of Eq. (5) and where usually t

If all the diagonal terms in B are placed into 0 so that the

diagonal of 4 is zero, then Eq. (5) is the Jacobi method for solving

(30)

linear equations, Under these conditions, Eq. (9) is the same as

the perturbation equation for the L-CCD model assuming an Epstein-Nesbet
(31)
32)

In the past, the Mgller-Plesset partitioning(

partitioning of the Hamiltonian.
has been demonstrated

to be the best choice for solving perturbation or cluster equations.(16) The
Mgller-Plesset partitioning places the diagonal effective one-body terms
(e.g., orbital energies) into ) and leaves the two-body terms in A. The
resulting iterative method is similar to the Jacobi method with over relaxation,
however, here there is a different relaxation parameter associated
with each diagonal element.

The slow convergence of the Jacobi method and related methods is

well-known. To obtain more rapid covergence for the iterative solution of the

1
K

!
i
i
!
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coupled cluster equations, we have adapted the reduced partitioning (RP)
method previously applied to the eigenvalue prob]eé?]-24) In the RP method,
the approximations obtained at each iteration are saved and then used on
subsequent iterations to provide a subpace onto which Eq. (6) is

projected and in which the projected system of equations is solved.

For example, if m £(i)'s are available, then we set up a

system of m-1 equations

RL=¢ (10)
where
Rij kzl b Bre ¢
- (i) (3)
- kzz te (Dyg * ) & an
- (i) (3) (i) (3+1) (1)
It Dty - E B Dty -l
k k
and where
sy =Tt e (12)
k
Once T is determined, the best approximation to T using m t(i)'s is
m] _ (1)
'E = Z Ti :\t' . (]3)

i-1, m-1
The superscript [m] on t indicates that r has been obtained from m t(i)'s.
g[m] will be the same length as t. As can be seen from Eq. (8) and (9), the
matrix elements for 5 and g are easy to evaluate since they are only weighted
overlap integrals between trial solutions of different iterations, giving

Eq. (10. This small matrix problem




can then be solved with standard algorithms specifically designed for
approximately singular matrices. It is important to note that the 5 matrix
rapidly tends to singularity. However, when 5 is singular then t[m] has
probably remained unchanged for at least one iteration and we already have }

a solution.

b
~ euEN WEmm sass won S gy

] ‘E Notice that it is optional whether the vectors tﬁi) are not
‘ solutions or whether increments (i.e., successively higher orders "perturbation"
corrections to the vector) are used, since the two approaches are related by
a linear transformation. The latter approach is the choice in the RP
eigenvalue prob]emel'zi%nce the matrix elements in Eq. (10) could be
‘6 conveniently related to perturbation energies and overlaps of perturbed wave-
functions.
| In the following examples, the Jacobi type iteration scheme (c.f.,
Eq. (9))has been used to generate the basis {E(i)} in which the reduced
linear Eq. (10) is solved. TheLg[n]} could provide an alternative basis;
however, the convergence properties for the L-CCD and L-CCSD models would remain
unaltered and a time consuming step-the construction of {E}"J} would have been added.
Thus far we have described methods for solving linear equations.
The general coupled-cluster equations are non-linear and it is of interest
X to ask whether the reduced linear equation method can be used for solving a

matrix equation of the form of Eq. (3). As a simple first step, the

quadratic term in Eq. (3 ) 1is written as an effective linear term ]
Y(t)'i,] = E G'ljktk (]4)
so that a general pseudo-linear version of Eq. (3) limited to quadratic terms

can be writton as
(15)

2+8 (5 t= 9




where 8 (E) is B+ X(

does not depend upon

E). If we partition 5 (g) into a diagonal matrix ) which
E and a non-diagonal matrix Q(E) which does depend upon
t, then equations (9),(11),(12), and (13) can sti11 be used providing Q(é'm )

is used whenever 4 is specified. If the sequence

—— g SES aum GBS P gl
(Vo)

TN L . (16)

9

converges, then the sequence of solutions

|
(;[]], 5[2], oo g[M]) (17)
to the reduced linear equations
g(m)(g)xb"] =™ w1, 2,3, ..M (18)

will converge to the same E as the sequence in Eq. (14). If the iterative
solution to Eq. (9) diverges, then the sequence of solutions to the reduced
linear equations does not necessarily converge since B (R) and Q(E) do not

converge. Consequently, for the non-linear equations, it is useful to take

e e

the best available solution (i.e., E[m]) and use it to define Q(&Em]). Thus,

‘i a suggested process for non-linear equations is

E(m+1) . 'Q-][i = (x[m]) £(m)] ) (19)

Alternative schemes for handling the problems of non-linearity in a linear
- framework may be envisioned. Such schemes must address questions concerning
consistency of the final solution and the rate of convergence. In the following,

we will apply the simple linearization method of Egs.(14) and (15) to several

P

- -

linear and non-linear coupled cluster examples to illustrate the relative speed

of convergence using the reduced linear equation (RLE) approach and for the

o3, 2 GFS

simple linearization discussed above for the non-linear equations.

—
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IT1. DISCUSSION OF RESULTS

As a first example of the RLE technique consider the Be atom.
In Table I are shown results for the two linearized coupled-cluster models,

L-CCD and L-CCSD and the non-linear CCSD-1 model. The GCTO 7s3p basis is

(33,7)

the same that has been used previously and is within 9x10'5h of the

2,2

SCF 1imit. Since in Be, the 2s and 2p orbitals are close in energy, the Is

configuration is expected to be relatively important compared to the 152252

2p

reference configuration in the correlated wavefunction. In the intermediately
normalized wavefunction, the correlating 1522p2 configurations have coefficients
of 0.14 for CCSD-1 and 0.16 for L-CCSD while other double-excitation configura-
tions involving this 2p orbital have coefficients about half as large. The
remaining coefficients are <0.05. This might be compared with a problem like
HZO at equilibrium where the largest coefficient of any configuration is
0.049.(8) This feature manifests itself in comparatively slow convergence of
perturbation theory for Be, as seen in Table I. On the other hand, the Padé
approximant resummation is far more effective, and the reduced linear equation
approach for the linearized models exceeds the convergence of the Padé
approximants.

The first cycle of perturbation theory is the second-order Mgller-

Plesset energy(32)

while at least the third-order perturbation result needs

to be computed before either the [1,0] Pade approximant [i.e., E2/(1—E3/E2),

the geometric approximation] or the first cycle of the RLE is possible. In fact,
for the linear theories it is possible to get two perturbation energies per
jteration, using a version of the 2n+1 rule of perturbation theory§16) This is

not in general applicable to the non-linear coupled-cluster iterations, however.




1

The similarity between EZ+E3, obtained from the second-cycle of
perturbation theory, and the [1,0] approximant attests to the relative
smallness in this example of E§/E2 and the other higher-order differences
that distinguish the [1,0] approximant from E2 + E3. Anologously, the Pade
approximants and the RLE results are also closely related, differing primarily
in that an exact matrix problem is solved in the RLE case, while the Pade
approximants offer an increasingly good approximation to the matrix equation

(15)

For the non-linear CCSD-1 equations, again the Pade analysis and

solution.

the RLE analysis; assuming the simple linearization of Eq. (14) are vastly
superior to the order-by-order iterative solution. However, the first-order
iterative convergence for CCSD-1 is superior to that observed in the
linearized models. This is because the incorporation of the quadratic, and
positive, Tg term, into the iterative cycle enhances the speed of convergence,
since Tg acts as a damping factor on the ~egative linear terms. In practice,

two iterations of the linearized equation are made, followed by the first non-

linear iteration. A1l subsequent cycles embrace a linear and non-linear iteration.

The main advantage of the Pade approximant analysis compared to
the RLE, is that the Padé approximants are obtained solely from the energies
computed at each iteratioé}6)0nce the energy is calculated, previous t vectors
can be discarded. In the RLE, the matrix in Eq. (10) needs to be computed,
and this requires overlaps among the different iterative cycles, which requires
that these quantities be retained on mass storage. The Pade approximant
analysis also has its disadvantages, however, in that they do not provide

wavefunction information conveniently. .» the RLE, the solution of the matrix

problem gives a highly accurate representation of the wavefunction along with
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the energy. In cases where X has not yet converged the RLE solution is
available and exactly corresponds to the RLE energy. The RLE solution is

also compact in the sense that it consists of just a few coefficients for

the different t vectors. This can sometimes have advantages when using the
wavefunction in different contexts, such as the prediction of second-order
properties.(24)

Another difficult example for convergence of the coupled-cluster
equations is offered by H2 at large separation. In this case, the reference
105 configuration becomes degenerate with the correlating double excitation,

105 . Any attempt to determine such a potential curve with only a single
RHF reference function and finite order perturbation theory will become
suspect at sufficiently large internuclear separation.

This is illustrated very clearly in Tables II and III, where results
for R = 1.2 and R = 6.0 a.u. are compared. The L-CCD results converge reasonably
well in the first case (~Tuh), but remain 0.4 hartrees in error through the
same cycle at 6a.u. This behavior is also reflected in the coefficient of
the 103 configuration which is 0.06 at 1.2 a.u. and 0.9 at 6.0 a.u. It is also
evident that the L-CCD result is much too low at €.0 a.u. compared to the CCD
and CCSD-1 values, and in fact, will tend to minus infinity at large R due
to singularities in the energy denominator. On the other hand, the L-CCD
result is not very different than the CCD or CCSD-1 values at 1.2 a.u. Fora
problem with the degeneracy illustrated here, it is extremely important to
retain the quadratic Tg terms to provide a reliable answer‘.(7 )

As is found for Be, the non-linear CCD and CCSD-1 models show markedly

better convergence than ti.e L-CCDamnodel. Whereas at 1.2 a.u. the improvement is
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comparatively slight, at 6.0 a.u., there is a dramatic difference. In fact,
the first-order iterative CCD solution converges as fast as the RLE or Padé
approximants. The CCSD-1 has somewhat poorer convergence probably due to
the failure to include Tf and T1T2 into the model.

Figure 1 compares the size of the increments between successive

cycles for the different models, the first-order iterative approach, the

| [N,N-11 and [N,N] Pade approximants, and the RLE results for the L-CCD and
CCD solutions for H2 at R=6.0 a.u. Rather than showing the convergence to

a final result, this figure perhaps offers some idea of the stability offered

by the different methods used to converge the solutions. The solid points

refer to the non-linear CCD results, utilizing the simple linearization
techniques of Eq. (14).

It is clear that the most stable results even for this highly
degenerate problem are offered by the RLE solution to the L-CCD equations.
The Pade approximants are very good, but they still tend to fluctuate at the
+ 10'8 jevel. The standard iterative, perturbation procedure retains large

1 level in all cycles shown.

increments at about the 10~
For the non-linear CCD equations, there is 11§t1e difference

between the RLE, Pade, and straightforward iterative techniques. None of

the approaches offer as much numerical stability as the RLE does for the

linear problem. Rather the RLE and the Padé approximants tend to reduce

the increment to ~10'9 in the 8-10 cycles, while even the iterative procedure

goes down to <10'8. Again it is very clear that the iterative approach is

vastly superior for CCD compared to L-CCD for this pathological example.

Strictly speaking, the [N,N-1] and [N,N] Pade approximants correspond to

ot i WG WG S e

two separate sequences, and their increments should be compared in that

]+ . ee o o manner, but for this example.there ic no apprecigbledifference.
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Very accurate convergence of the CCD solution has been found to be

necessary to obtain the highly sensitive quartic force field that we have

(8)

reported for the Hzo molecule.
-10

In this example, convergence to less
than 10 could be readily detected in the force field determination.

In a final example, in Table IV, results for the CCD and CCSD-1
models for N, are presented. At R=3.0 a.u., the bifurcation into separate

RHF and UHF solutions for N, has already occurred,(]7)

causing a decided
lack of stability in the RHF based coupled-cluster models. For example, some
of the double excitation coefficients are already as large as 0.22, with
several others lying in the range 0.11 to 0.06.

Except for the much larger number of electrons and the earlier
onset of the instability, N2 behaves very much like Hy, in that an L-CCD
solution, even at 3.0 a.u. will be much too negative and highly slowly convergent,
while the CCD and CCSD-1 provide more realistic results. Again, the Pade
approximants and RLE give relatively good convergence to the solution, both better
than the itevative technique. The larger number of electrons does not seem to
require that more cycles be run to get the solution, even though it is clear
that the iterative technique is poorer for N2 than in H,.

In conclusion, the reduced linear equation approach has been shown
to be very efficient, accurate, and convenient for obtaining solutions of
Tinear coupled cluster equations. This may have importance for solving a
wider variety of linear equation systems. The RLE coupled with a simple,
approximate linearization of the non-linear equations, is somewhat less
satisfactory, but still at least as good as other techniques, and much better

than a straightforward iterative approach. More sophisticated ways of
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incorporating the non-linearity of the general coupled cluster equations
that still give a quasi-linear system may be found that would aliow the

RLE approach to function more efficiently. The main advantage of the RLE
procedure compared to a Pade approximant analysis, is the ease of obtaining

the coupled-cluster wavefunction in addition to the energy.
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Figure 1.

Increments between successive cycles in the convergence of
the L-CCD and CCD equations for Hp at R = 6.0 a.u. Solid
points refer to the L-CCD equations and open points to the
CCD equations.
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